\(\int \cos ^3(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [867]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 92 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {1}{2} (A b+a B+2 b C) x+\frac {(2 a A+3 b B+3 a C) \sin (c+d x)}{3 d}+\frac {(A b+a B) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a A \cos ^2(c+d x) \sin (c+d x)}{3 d} \]

[Out]

1/2*(A*b+B*a+2*C*b)*x+1/3*(2*A*a+3*B*b+3*C*a)*sin(d*x+c)/d+1/2*(A*b+B*a)*cos(d*x+c)*sin(d*x+c)/d+1/3*a*A*cos(d
*x+c)^2*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {4159, 4132, 2717, 4130, 8} \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sin (c+d x) (2 a A+3 a C+3 b B)}{3 d}+\frac {(a B+A b) \sin (c+d x) \cos (c+d x)}{2 d}+\frac {1}{2} x (a B+A b+2 b C)+\frac {a A \sin (c+d x) \cos ^2(c+d x)}{3 d} \]

[In]

Int[Cos[c + d*x]^3*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((A*b + a*B + 2*b*C)*x)/2 + ((2*a*A + 3*b*B + 3*a*C)*Sin[c + d*x])/(3*d) + ((A*b + a*B)*Cos[c + d*x]*Sin[c + d
*x])/(2*d) + (a*A*Cos[c + d*x]^2*Sin[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4159

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a A \cos ^2(c+d x) \sin (c+d x)}{3 d}-\frac {1}{3} \int \cos ^2(c+d x) \left (-3 (A b+a B)-(2 a A+3 b B+3 a C) \sec (c+d x)-3 b C \sec ^2(c+d x)\right ) \, dx \\ & = \frac {a A \cos ^2(c+d x) \sin (c+d x)}{3 d}-\frac {1}{3} \int \cos ^2(c+d x) \left (-3 (A b+a B)-3 b C \sec ^2(c+d x)\right ) \, dx-\frac {1}{3} (-2 a A-3 b B-3 a C) \int \cos (c+d x) \, dx \\ & = \frac {(2 a A+3 b B+3 a C) \sin (c+d x)}{3 d}+\frac {(A b+a B) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a A \cos ^2(c+d x) \sin (c+d x)}{3 d}-\frac {1}{2} (-A b-a B-2 b C) \int 1 \, dx \\ & = \frac {1}{2} (A b+a B+2 b C) x+\frac {(2 a A+3 b B+3 a C) \sin (c+d x)}{3 d}+\frac {(A b+a B) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a A \cos ^2(c+d x) \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.92 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {6 A b c+6 a B c+6 A b d x+6 a B d x+12 b C d x+3 (3 a A+4 b B+4 a C) \sin (c+d x)+3 (A b+a B) \sin (2 (c+d x))+a A \sin (3 (c+d x))}{12 d} \]

[In]

Integrate[Cos[c + d*x]^3*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(6*A*b*c + 6*a*B*c + 6*A*b*d*x + 6*a*B*d*x + 12*b*C*d*x + 3*(3*a*A + 4*b*B + 4*a*C)*Sin[c + d*x] + 3*(A*b + a*
B)*Sin[2*(c + d*x)] + a*A*Sin[3*(c + d*x)])/(12*d)

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.80

method result size
parallelrisch \(\frac {3 \left (A b +a B \right ) \sin \left (2 d x +2 c \right )+a A \sin \left (3 d x +3 c \right )+3 \left (a \left (3 A +4 C \right )+4 B b \right ) \sin \left (d x +c \right )+6 d \left (a B +b \left (A +2 C \right )\right ) x}{12 d}\) \(74\)
risch \(\frac {A b x}{2}+\frac {a B x}{2}+x C b +\frac {3 a A \sin \left (d x +c \right )}{4 d}+\frac {\sin \left (d x +c \right ) B b}{d}+\frac {\sin \left (d x +c \right ) C a}{d}+\frac {a A \sin \left (3 d x +3 c \right )}{12 d}+\frac {\sin \left (2 d x +2 c \right ) A b}{4 d}+\frac {\sin \left (2 d x +2 c \right ) a B}{4 d}\) \(101\)
derivativedivides \(\frac {\frac {a A \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+A b \left (\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a B \left (\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+B b \sin \left (d x +c \right )+C a \sin \left (d x +c \right )+C b \left (d x +c \right )}{d}\) \(102\)
default \(\frac {\frac {a A \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+A b \left (\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a B \left (\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+B b \sin \left (d x +c \right )+C a \sin \left (d x +c \right )+C b \left (d x +c \right )}{d}\) \(102\)
norman \(\frac {\left (\frac {1}{2} A b +\frac {1}{2} a B +C b \right ) x +\left (\frac {1}{2} A b +\frac {1}{2} a B +C b \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (\frac {1}{2} A b +\frac {1}{2} a B +C b \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (\frac {1}{2} A b +\frac {1}{2} a B +C b \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (-A b -a B -2 C b \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-A b -a B -2 C b \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\frac {\left (2 a A -A b -a B +2 B b +2 C a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {\left (2 a A +A b +a B +2 B b +2 C a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {2 \left (4 a A -3 A b -3 a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {2 \left (4 a A +3 A b +3 a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}+\frac {4 \left (a A -3 B b -3 C a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}\) \(328\)

[In]

int(cos(d*x+c)^3*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/12*(3*(A*b+B*a)*sin(2*d*x+2*c)+a*A*sin(3*d*x+3*c)+3*(a*(3*A+4*C)+4*B*b)*sin(d*x+c)+6*d*(a*B+b*(A+2*C))*x)/d

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.76 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, {\left (B a + {\left (A + 2 \, C\right )} b\right )} d x + {\left (2 \, A a \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, A + 3 \, C\right )} a + 6 \, B b + 3 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/6*(3*(B*a + (A + 2*C)*b)*d*x + (2*A*a*cos(d*x + c)^2 + 2*(2*A + 3*C)*a + 6*B*b + 3*(B*a + A*b)*cos(d*x + c))
*sin(d*x + c))/d

Sympy [F]

\[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right ) \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \cos ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)**3*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)*cos(c + d*x)**3, x)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.07 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {4 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A b - 12 \, {\left (d x + c\right )} C b - 12 \, C a \sin \left (d x + c\right ) - 12 \, B b \sin \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/12*(4*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a - 3*(2*d*x + 2*c + sin(2*d*x + 2*c))*B*a - 3*(2*d*x + 2*c + sin
(2*d*x + 2*c))*A*b - 12*(d*x + c)*C*b - 12*C*a*sin(d*x + c) - 12*B*b*sin(d*x + c))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 227 vs. \(2 (84) = 168\).

Time = 0.30 (sec) , antiderivative size = 227, normalized size of antiderivative = 2.47 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, {\left (B a + A b + 2 \, C b\right )} {\left (d x + c\right )} + \frac {2 \, {\left (6 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(3*(B*a + A*b + 2*C*b)*(d*x + c) + 2*(6*A*a*tan(1/2*d*x + 1/2*c)^5 - 3*B*a*tan(1/2*d*x + 1/2*c)^5 + 6*C*a*
tan(1/2*d*x + 1/2*c)^5 - 3*A*b*tan(1/2*d*x + 1/2*c)^5 + 6*B*b*tan(1/2*d*x + 1/2*c)^5 + 4*A*a*tan(1/2*d*x + 1/2
*c)^3 + 12*C*a*tan(1/2*d*x + 1/2*c)^3 + 12*B*b*tan(1/2*d*x + 1/2*c)^3 + 6*A*a*tan(1/2*d*x + 1/2*c) + 3*B*a*tan
(1/2*d*x + 1/2*c) + 6*C*a*tan(1/2*d*x + 1/2*c) + 3*A*b*tan(1/2*d*x + 1/2*c) + 6*B*b*tan(1/2*d*x + 1/2*c))/(tan
(1/2*d*x + 1/2*c)^2 + 1)^3)/d

Mupad [B] (verification not implemented)

Time = 16.64 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.09 \[ \int \cos ^3(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {A\,b\,x}{2}+\frac {B\,a\,x}{2}+C\,b\,x+\frac {3\,A\,a\,\sin \left (c+d\,x\right )}{4\,d}+\frac {B\,b\,\sin \left (c+d\,x\right )}{d}+\frac {C\,a\,\sin \left (c+d\,x\right )}{d}+\frac {A\,a\,\sin \left (3\,c+3\,d\,x\right )}{12\,d}+\frac {A\,b\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {B\,a\,\sin \left (2\,c+2\,d\,x\right )}{4\,d} \]

[In]

int(cos(c + d*x)^3*(a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(A*b*x)/2 + (B*a*x)/2 + C*b*x + (3*A*a*sin(c + d*x))/(4*d) + (B*b*sin(c + d*x))/d + (C*a*sin(c + d*x))/d + (A*
a*sin(3*c + 3*d*x))/(12*d) + (A*b*sin(2*c + 2*d*x))/(4*d) + (B*a*sin(2*c + 2*d*x))/(4*d)